24 research outputs found

    Luminescent studies on germanate glasses doped with europium ions for photonic applications

    Get PDF
    Jacek ̇Żmojda, Marcin Kochanowicz, Piotr Miluski, Piotr Golonko, Agata Baranowska, Tomasz Ragiń, Jan Dorosz, Renata Szal, Gabriela Mach, Bartosz Starzyk, Magdalena Leśniak, Maciej Sitarz, Dominik DoroszGlass and ceramic materials doped with rare earth (RE) ions have gained wide interest in photonics as active materials for lasers, optical amplifiers, and luminescent sensors. The emission properties of RE-doped glasses depend on their chemical composition, but they can also be tailored by modifying the surrounding active ions. Typically, this is achieved through heat treatment (including continuous-wave and pulsed lasers) after establishing the ordering mechanisms in the particular glass–RE system. Within the known systems, silicate glasses predominate, while much less work relates to materials with lower energy phonons, which allow more e cient radiation sources to be constructed for photonic applications. In the present work, the luminescent and structural properties of germanate glasses modified with phosphate oxide doped with Eu3+ ions were investigated. Europium dopant was used as a “spectroscopic probe” in order to analyze the luminescence spectra, which characterizes the changes in the local site symmetries of Eu3+ ions. Based on the spectroscopic results, a strong influence of P2O5 content was observed on the excitation and luminescence spectra. The luminescence study of the most intense 5D0!7F2 (electric dipole) transition revealed that the increase in the P2O5 content leads to the linewidth reduction (from 15 nm to 10 nm) and the blue shift (~2 nm) of the emission peak. According to the crystal field theory, the introduction of P2O5 into the glass structure changes the splitting number of sublevels of the 5D0!7F1 (magnetic dipole) transition, confirming the higher polymerization of fabricated glass. The slightly di erent local environment of Eu3+ centers the results in a number of sites and causes inhomogeneous broadening of spectral lines. It was found that the local asymmetry ratio estimated by the relation of (5D0!7F2)/(5D0!7F1) transitions also confirms greater changes in local symmetry around Eu3+ ions. Our results indicate that modification of germanate glass by P2O5 allows control of their structural properties in order to functionalize the emissions for application as luminescent light sources and sensors

    Influence of oxide glass modifiers on the structural and spectroscopic properties of phosphate glasses for visible and near-infrared photonic applications

    Get PDF
    The e ect of oxide modifiers on multiple properties (structural and spectroscopic) of phosphate glasses with molar composition 60P2O5-(10x)Ga2O3-30MO-xEu2O3 and 60P2O5- (10y)Ga2O3-30MO-yEr2O3 (where M = Ca, Sr, Ba; x = 0, 0.5; y = 0, 1) were systematically examined and discussed. The local structure of systems was evidenced by the infrared (IR-ATR) and Raman spectroscopic techniques. The spectroscopic behaviors of the studied glass systems were determined based on analysis of recorded spectra (excitation and emission) as well as luminescence decay curves. Intense red and near-infrared emissions (1.5 m) were observed for samples doped with Eu3+ and Er3+ ions, respectively. It was found that the value of fluorescence intensity ratio R/O related to 5D0!7F2 (red) and 5D0!7F1 (orange) transition of Eu3+ ions depends on the oxide modifiers MO in the glass host. However, no clear influence of glass modifiers on the luminescence linewidth (FWHM) was observed for phosphate systems doped with Er3+ ions. Moreover, the 5D0 and 4I13/2 luminescence lifetimes of Eu3+ and Er3+ ions increase with the increasing ionic radius of M2+ (M = Ca, Sr, Ba) in the host matrix. The obtained results suggest the applicability of the phosphate glasses with oxide modifiers as potential red and near-infrared photoluminescent materials in photonic devices

    Spectroscopic Properties of Inorganic Glasses Doped with Pr3+: A Comparative Study

    Get PDF
    The results presented in this communication concern visible and near-IR emission of Pr3+ ions in selected inorganic glasses, i.e., borate-based glass with Ga2O3 and BaO, lead-phosphate glass with Ga2O3, gallo-germanate glass modified by BaO/BaF2, and multicomponent fluoride glass based on InF3. Glasses present several emission bands at blue, reddish orange, and near-infrared spectral ranges, which correspond to 4f–4f electronic transitions of Pr3+. The profiles of emission bands and their relative intensity ratios depend strongly on glass-host. Visible emission of Pr3+ ions is tuned from red/orange for borate-based glass to nearly white light for multicomponent fluoride glass based on InF3. The positions and spectral linewidths for near-infrared luminescence bands at the optical telecommunication window corresponding to the 1G4 → 3H5, 1D2 → 1G4, and 3H4 → 3F3,3F4 transitions of Pr3+ are dependent on glass-host matrices and excitation wavelengths. Low-phonon fluoride glasses based on InF3 and gallo-germanate glasses with BaO/BaF2 are excellent candidates for broadband near-infrared optical amplifiers. Spectroscopic properties of Pr3+-doped glasses are compared and discussed in relation to potential optical applications

    Up-conversion luminescence in low phonon heavy metal oxide glass co-doped with Er3+/Ho3+ ions

    Get PDF
    In this paper, heavy metal oxide glasses co-doped with erbium and holmium ions have been synthesized. Glass composition, based on bismuth and germanium oxides, has been selected in terms of high thermal stability (∆T = 125 °C), high refractive index (n = 2.19) and low maximum phonon energy (hνmax = 724 cm⁻¹). Up-conversion luminescence spectra under the 980 nm laser diode excitation have been observed as a result of radiative transitions within the quantum energy level structures of Er³⁺ and Ho³⁺ ions. Optimization of rare earth ions content has been conducted, the highest emission intensity in the visible wavelength range has been observed in glass co-doped with molar concentration 0.5 Er2O3 / 0.5 Ho2O3

    Lead borate glasses and glass-ceramics singly doped with Dy3+ for white LEDs

    Get PDF
    In this paper, some series of lead borate glasses and glass ceramics singly doped with Dy3+ ions were prepared and then studied using spectroscopic techniques. Our research includes mainly studies of the luminescence properties of received materials for white light. The luminescence bands associated with the characteristic 4F9/2!6H15/2 (blue), 4F9/2!6H13/2 (yellow) and 4F9/2!6H11/2 (red) transitions of trivalent dysprosium in lead borate systems are well observed. In particular, the Commission Internationale de I’Eclairage (CIE) chromaticity coordinates (x, y) were calculated in relation to potential applications for white light-emitting diodes (W-LEDs). Their values depend on the relative B2O3/PbO ratios and PbX2 contents (where X = Cl, F, Br) in glass composition. For glass-ceramics, the chromaticity coordinates are changed significantly under di erent excitation wavelengths

    Transition metals (Cr3+) and lanthanides (Eu3+) in inorganic glasses with extremely different glass-formers B2O3 and GeO2

    Get PDF
    Glasses containing two different network-forming components and doped with optically active ions exhibit interesting properties. In this work, glass systems based on germanium dioxide and boron trioxide singly doped with lanthanides (Eu3+) and transition metals (Cr3+) ions are research subjects. Optical spectroscopy was the major research tool used to record excitation and emission spectra in a wide spectral range for studied systems. The emitted radiation of glasses doped with Cr3+ ions is dominated by broadband luminescence centered at 770 nm and 1050 nm (4T2 ! 4A2). Interestingly, the increase of concentration of one of the oxides contributed to the detectable changes of the R-line (2E ! 4A2) of Cr3+ ions. Moreover, EPR spectroscopy confirmed the paramagnetic properties of the obtained glasses. The influence of molar ratio GeO2:B2O3 on spectroscopic properties for Eu3+ ions is discussed. The intensity of luminescence bands due to transitions of trivalent europium ions as well as the ratio R/O decrease with the increase of B2O3. On the other hand, the increase in concentration B2O3 influences the increasing tendency of luminescence lifetimes for the 5D0 state of Eu3+ ions. The results will contribute to a better understanding of the role of the glass host and thus the prospects for new optical materials

    Spectroscopic properties of erbium-doped oxyfluoride phospho-tellurite glass and transparent glass-ceramic containing BaF2 nanocrystals

    Get PDF
    The ErF3-doped oxyfluoride phospho-tellurite glasses in the (40-x) TeO2-10P2O5-45 (BaF2-ZnF2) -5Na2O-xErF3 system (where x = 0.25, 0.50, 0.75, 1.00, and 1.25 mol%) have been prepared by the conventional melt-quenching method. The effect of erbium trifluoride addition on thermal, structure, and spectroscopic properties of oxyfluoride phospho-tellurite precursor glass was studied by differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), and Raman spectroscopy as well as emission measurements, respectively. The DSC curves were used to investigate characteristic temperatures and thermal stability of the precursor glass doped with varying content of ErF3. FTIR and Raman spectra were introduced to characterize the evolution of structure and phonon energy of the glasses. It was found that the addition of ErF3 up to 1.25 mol% into the chemical composition of phospho-tellurite precursor glass enhanced 2.7 µm emission and upconversion. By controlled heat-treatment process of the host glass doped with the highest content of erbium trifluoride (1.25 mol%), transparent erbium-doped phospho-tellurite glass-ceramic (GC) was obtained. X-ray diffraction analysis confirmed the presence of BaF2 nanocrystals with the average 16 nm diameter in a glass matrix. Moreover, MIR, NIR, and UC emissions of the glass-ceramic were discussed in detail and compared to the spectroscopic properties of the glass doped with 1.25 mol% of ErF3 (the base glass)

    Novel multicomponent titanate-germanate glasses : synthesis, structure, properties, transition metal, and rare earth doping

    Get PDF
    Novel multicomponent titanate-germanate glasses singly doped with transition metal (Cr3+) and rare earth ions (Eu3+) were synthesized and the glass transition temperatures and thermal stability parameters were determined using DSC measurements. X-ray di raction analysis confirmed fully amorphous nature of the received samples. Their structural and optical properties were compared with germanate glasses without TiO2. Correlation between local structure and optical properties in titanate-germanate glasses is well evidenced by FT-IR, Raman, EPR, and luminescence spectroscopy. In particular, luminescence spectra and their decays are examined for glass samples, where GeO2 was partially substituted by TiO2

    Structure and luminescence properties of transparent germanate glassceramics co-doped with Ni2+/Er3+ for near-infrared optical fiber application

    Get PDF
    An investigation of the structural and luminescent properties of the transparent germanate glass-ceramics co-doped with Ni2+/Er3+ for near-infrared optical fiber applications was presented. Modification of germanate glasses with 10–20 ZnO (mol.%) was focused to propose the additional heat treatment process controlled at 650 C to obtain transparent glass-ceramics. The formation of 11 nm ZnGa2O4 nanocrystals was confirmed by the X-ray diffraction (XRD) method. It followed the glass network changes analyzed in detail (MIR—Mid Infrared spectroscopy) with an increasing heating time of precursor glass. The broadband 1000–1650 nm luminescence ( exc = 808 nm) was obtained as a result of Ni2+: 3T2(3F) ! 3A2(3F) octahedral Ni2+ ions and Er3+: 4I13/2 ! 4I15/2 radiative transitions and energy transfer from Ni2+ to Er3+ with the efficiency of 19%. Elaborated glass–nanocrystalline material is a very promising candidate for use as a core of broadband luminescence optical fibers

    Investigation of the TeO2/GeO2 Ratio on the Spectroscopic Properties of Eu3+-Doped Oxide Glasses for Optical Fiber Application

    Get PDF
    This study presented an analysis of the TeO2/GeO2 molar ratio in an oxide glass system. A family of melt-quenched glasses with the range of 0–35 mol% of GeO2 has been characterized by using DSC, Raman, MIR, refractive index, PLE, PL spectra, and time-resolved spectral measurements. The increase in the content of germanium oxide caused an increase in the transition temperature but a decrease in the refractive index. The photoluminescence spectra of europium ions were examined under the excitation of 465 nm, corresponding to 7F0 → 5D2 transition. The PSB (phonon sidebands) analysis was carried out to determine the phonon energy of the glass hosts. It was reported that the red (5D0 → 7F2) to orange (5D0 → 7F1) fluorescence intensity ratio for Eu3+ ions decreased from 4.49 (Te0Ge) to 3.33 (Te15Ge) and showed a constant increase from 4.58 (Te20Ge) to 4.88 (Te35Ge). These optical features were explained in structural studies, especially changes in the coordination of [4]Ge to [6]Ge. The most extended lifetime was reported for the Eu3+ doped glass with the highest content of GeO2. This glass was successfully used for the drawing of optical fiber
    corecore